Correction to "Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells".

نویسندگان

  • Hsin-Wei Chen
  • Nobuya Sakai
  • Masashi Ikegami
  • Tsutomu Miyasaka
چکیده

Although there has been rapid progress in the efficiency of perovskite-based solar cells, hysteresis in the current-voltage performance is not yet completely understood. Owing to its complex structure, it is not easy to attribute the hysteretic behavior to any one of different components, such as the bulk of the perovskite or different heterojunction interfaces. Among organo-lead halide perovskites, methylammonium lead iodide perovskite (CH3NH3PbI3) is known to have a ferroelectric property. The present investigation reveals a strong correlation between transient ferroelectric polarization of CH3NH3PbI3 induced by an external bias in the dark and hysteresis enhancement in photovoltaic characteristics. Our results demonstrate that the reverse bias poling (-0.3 to -1.1 V) of CH3NH3PbI3 photovoltaic layers prior to the photocurrent-voltage measurement generates stronger hysteresis whose extent changes significantly by the cell architecture. The phenomenon is interpreted as the effect of remanent polarization in the perovskite film on the photocurrent, which is most enhanced in planar perovskite structures without mesoporous scaffolds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ferroelectric solar cells based on inorganic–organic hybrid perovskites

Ferroelectric solar cells based on ferroelectric oxides have attracted significant attention owing to many unique advantages, such as the switchable photocurrent and photovoltage, and the above bandgap open circuit voltages. However, the small photocurrent densities of the typical ferroelectric solar cells greatly limit their photovoltaic performance. In this report, we experimentally revealed ...

متن کامل

Methodologies for high efficiency perovskite solar cells

Since the report on long-term durable solid-state perovskite solar cell in 2012, perovskite solar cells based on lead halide perovskites having organic cations such as methylammonium CH3NH3PbI3 or formamidinium HC(NH2)2PbI3 have received great attention because of superb photovoltaic performance with power conversion efficiency exceeding 22 %. In this review, emergence of perovskite solar cell ...

متن کامل

Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis.

Characteristic times of perovskite solar cells (PSCs) have been measured by different techniques: transient photovoltage decay, transient photoluminescence, and impedance spectroscopy. A slow dynamic process is detected that shows characteristic times in the seconds to milliseconds scale, with good quantitative agreement between transient photovoltage decay and impedance spectroscopy. Here, we ...

متن کامل

A lead-halide perovskite molecular ferroelectric semiconductor

Inorganic semiconductor ferroelectrics such as BiFeO3 have shown great potential in photovoltaic and other applications. Currently, semiconducting properties and the corresponding application in optoelectronic devices of hybrid organo-plumbate or stannate are a hot topic of academic research; more and more of such hybrids have been synthesized. Structurally, these hybrids are suitable for explo...

متن کامل

Modeling Anomalous Hysteresis in Perovskite Solar Cells.

Organic-inorganic lead halide perovskites are distinct from most other semiconductors because they exhibit characteristics of both electronic and ionic motion. Accurate understanding of the optoelectronic impact of such properties is important to fully optimize devices and be aware of any limitations of perovskite solar cells and broader optoelectronic devices. Here we use a numerical drift-dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry letters

دوره 6 6  شماره 

صفحات  -

تاریخ انتشار 2015